메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양의홍 (홍익대학교) 강신진 (홍익대학교) 조성현 (홍익대학교)
저널정보
한국게임학회 한국게임학회 논문지 한국게임학회 논문지 제19권 제6호
발행연도
2019.12
수록면
61 - 70 (10page)
DOI
10.7583/JKGS.2019.19.6.61

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 경영 시뮬레이션 게임 분야에서 강화학습을 적용하여 게임 에이전트들이 자율적으로 주어진 목표를 달성하는지를 확인하고자 한다. 본 시스템에서는 Unity Machine Learning (ML) Agent 환경에서 PPO (Proximal Policy Optimization) 알고리즘을 적용하여 게임 에이전트가 목표를 달성하기 위해 자동으로 플레이 방법을 찾도록 설계하였다. 그 유용성을 확인하기 위하여 5가지의 게임 시나리오 시뮬레이션 실험을 수행하였다. 그 결과 게임 에이전트가 다양한 게임 내 환경 변수의 변화에도 학습을 통하여 목표를 달성한다는 것을 확인하였다.

목차

요약
ABSTRACT
1. 서론
2. 관련 연구
3. 시스템
4. 시뮬레이션 방법
5. 시뮬레이션 결과
6. 결론
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0