메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정원조 (굿게임 스튜디오)
저널정보
한국게임학회 한국게임학회 논문지 한국게임학회 논문지 제20권 제1호
발행연도
2020.2
수록면
57 - 66 (10page)
DOI
10.7583/JKGS.2020.20.1.57

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
연구는 MOBA 게임에서 선호도가 낮은 Supporter를 대체하는 인공지능을 강화학습을 이용한 구현을 목표하였다. ML_Agent를 이용해 게임의 규칙, 환경, 관측 정보, 보상 처벌을 구성하였다. DPS 에이전트로 구성된 그룹과, Support 에이전트가 있는 그룹으로 나누어 강화학습을 진행하였다. 결과 데이터인 누적 보상 값, 사망 횟수 바탕으로 결론을 도출하였다. 협력 플레이 그룹이 비교 그룹보다 평균 누적 보상 값이 3.3 더 높게 측정되었으며 사망 횟수 총합 평균은 3.15 낮게 되었다. 이를 바탕으로 죽음을 최소화하고 보상을 최대화하는 협력 플레이를 수행하는 강화학습을 확인할 수 있었다.

목차

요약
ABSTRACT
1. 서론
2. 사전연구
3. 실험 설계
4. 실험 및 결과
5. 결론
REFERENCES

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0