메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zhen Wang (Wuhan University of Technology) Guoshan Xu (Harbin Institute of Technology) Qiang Li (Harbin Institute of Technology) Bin Wu (Wuhan University of Technology)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.25 No.5
발행연도
2020.1
수록면
569 - 580 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The identification of delays and delay compensation are critical problems in real-time hybrid simulations (RTHS). Conventional delay compensation methods are mostly based on the assumption of a constant delay. However, the system delay may vary during tests owing to the nonlinearity of the loading system and/or the behavioral variations of the specimen. To address this issue, this study presents an adaptive delay compensation method based on a discrete model of the loading system. In particular, the parameters of this discrete model are identified and updated online with the least-squares method to represent a servo hydraulic loading system. Furthermore, based on this model, the system delays are compensated for by generating system commands using the desired displacements, achieved displacements, and previous displacement commands. This method is more general than the existing compensation methods because it can predict commands based on multiple displacement categories. Moreover, this method is straightforward and suitable for implementation on digital signal processing boards because it relies solely on the displacements rather than on velocity and/or acceleration data. The virtual and real RTHS results show that the studied method exhibits satisfactory estimation smoothness and compensation accuracy. Furthermore, considering the measurement noise, the low-order parameter models of this method are more favorable than that the high-order parameter models.

목차

등록된 정보가 없습니다.

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0