메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (10)

초록· 키워드

오류제보하기
본 논문에서는 각 입력 변수에 대하여 퍼지 공간을 분할한 퍼지 집합 기반 퍼지 추론 시스템을 제안한다. 퍼지 모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 정보 granules는 근접성, 유사성 또는 기능성 등의 기준에 의해 서로 결합된 물체(특히, 데이터 점)의 연결된 모임으로 간주된다. 정보 데이터의 특성을 살리기 위해 HCM 클러스터링 방법에 의한 중심값을 이용하여 각 입력 변수에 대한 퍼지 집합 기반 전반부/후반부 구조 및 파라미터를 동정한다. 퍼지 추론 방법은 간략 및 선형 퍼지 추론을 수행하며 삼각형 멤버쉽 함수를 사용한다. 구축된 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정하며, 학습 및 테스트 데이터의 성능 결과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 사용하여 근사화와 예측성능의 향상을 꾀한다. 또한, 제안된 퍼지 모델은 수치적인 예를 통하여 성능을 평가한다.

목차

요약
1. 서론
2. 퍼지 추론 시스템
3. 퍼지 추론 시스템의 최적 설계
4. 실험 데이터를 통한 결과 고찰
5. 결론
감사의 글
6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015066916