메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The article presents ARTMAP and Fuzzy BK-Product approach underwater obstacle avoidance for the Autonomous underwater Vehicles (AUV). The AUV moves an unstructured area of underwater and could be met with obstacles in its way. The AUVs are equipped with complex sensorial systems like camera, aquatic sonar system, and transducers. A Neural integrated Fuzzy BK-Product controller, which integrates Fuzzy logic representation of the human thinking procedure with the learning capabilities of neural-networks (ARTMAP), is developed for obstacle avoidance in the case of unstructured areas. In this paper, ARTMAP-Fuzzy BK-Product controller architecture comprises of two distinct elements, are 1) Fuzzy Logic Membership Function and 2) Feed-Forward ART component. Feed-Forward ART component is used to understanding the unstructured underwater environment and Fuzzy BK-Product interpolates the Fuzzy rule set and after the defuzzyfication, the output is used to take the decision for safety direction to go for avoiding the obstacle collision with the AUV. An on-line reinforcement learning method is introduced which adapts the performance of the fuzzy units continuously to any changes in the environment and make decision for the optimal path from source to destination.

목차

Abstract
Introduction
1. ARTMAP:
2. Fuzzy Relational Method of Bandler and Kohout:
3. Applying ARTMAP and BK-Subtriangle products to intelligent Obstacle Avoidance of AUVs:
4. Case Students:
5. System Overview:
6. Results of the Simulation:
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015010590