메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박천호 (Soongsil University) 김민관 (Soongsil University) 이승준 (Soongsil University) 최정일 (Soongsil University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제12호(통권 제237호)
발행연도
2023.12
수록면
167 - 174 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 합성곱 신경망 모델에서 이미지 데이터 증강을 통하여 대장암 진단 모델의 정확도를 개선하고자 하였다. 이미지 데이터 증강은 기초 이미지 조작 방법을 이용하여 뒤집기, 회전, 이동, 밀림, 주밍을 사용하였다. 본 연구에서는 실험설계를 위해 보유하고 있는 5000개의 이미지 데이터에 대해 훈련 데이터와 평가 데이터로 각각 4000개와 1000개로 나누었으며, 훈련 데이터 4000개에 대해 이미지 데이터 증강 기법으로 4000개와 8000개의 이미지를 추가하여 모델을 학습시켰다. 평가 결과는 훈련 데이터 4000개, 8000개, 12000개에 대한 분류 정확도가 각각 85.1%, 87.0%, 90.2%로 나왔으며 이미지 데이터 증강에 따른 개선 효과를 확인하였다.

목차

Abstract
요약
I. Introduction
II. Related Works
III. The Proposed Scheme
IV. Experiment and Results
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0