메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xianjin Xu (Hubei University of Technology) Yanhao Huang (Hubei University of Technology) Lanlan Liu (State Grid Hunan Electric Power Company) Yu Yan (State Grid Hunan Electric Power Company) Haifeng Yan (Hubei University of Technology) Yuhang Yang (Hubei University of Technology)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.28 No.2
발행연도
2023.6
수록면
108 - 123 (16page)
DOI
10.4283/JMAG.2023.28.2.108

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Currently, most of the inspection robots for high-voltage transmission lines, both at home and abroad, utilize a multi-cantilever rigid structure. However, the inefficiency and poor safety of these robots when it comes to crossing obstacles make them impractical. To address this issue, a magnetically actuated soft inspection robot has been developed. This robot uses the amperage force applied to the current-carrying coil in a HVDC toroidal magnetic field to efficiently and flexibly cross multiple obstacles in an inchworm-like motion. The focus of this paper is on the design and theoretical calculation of the magnetically actuated model, specifically the magnetic linear traction force and magnetic adsorption force (diastolic force), required to enable the soft robot to crawl. Through simulation and kinematic analysis, the results show that the magnetically actuated soft robot design proposed in this paper is theoretically feasible, providing a foundation for future developments in magnetically actuated soft robots.

목차

1. Introduction
2. Inspection Robot Operating Environment Characteristics and Simulation
3. Magnetically Actuated Soft Inspection Robot Barrier Crossing Structure Design
4. Magnetically Actuated Simulation Analysis
5. Kinematic Analysis of The “Ω” Motion of Magnetically Actuated Soft Inspection Robot
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-428-001782950