메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박지영 (Korea Transport Institute) 김찬성 (Korea Transport Institute)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제71권 제11호
발행연도
2022.11
수록면
1,639 - 1,645 (7page)
DOI
10.5370/KIEE.2022.71.11.1639

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Reliable charging infrastructure is an essential element to transform the current fossil fuel-centered automobile market into electric vehicles. In Korea, the supply level of public charging infrastructure is better than that of other countries, but the residential charging infrastructure is hard to expand due to the domestic characteristics. Therefore, in order to meet the electric vehicle era in the future, charging infrastructure supply strategies suitable for the domestic situation should be prepared. This study analyzed the charging patterns of electric vehicle drivers as essential data necessary for future charging infrastructure plans and decision-making on the supply of charging facilities. This study utilized the data of one-week charging events survey of 297 electric car drivers conducted in 2021, and the Latent Class Analysis was applied to identify the charging pattern of individual driver. As a result, the charging patterns of electric car drivers were classified into four types: Mixed & Slow 69.3%, Home & Slow 16.5%, Public-centric 8.2%, and Work & Slow 6.1%. As a result of analyzing the predictive variables of the charging pattern through multi-logit analysis, accessibility by charging infrastructure type and preference by type of charging infrastructure were found to be statistically significant affecting factors for all charging patterns. For some classes of charging pattern, annual driving mileage and parking conditions at home were also found to have a significant effect.

목차

Abstract
1. 서론
2. 선행연구 고찰
3. 충전패턴 유형화를 위한 잠재계층분석
4. 충전패턴 유형과 예측변인 분석
5. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0