메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Mansi Agnihotri (Guru Gobind Singh Indraprastha University) Anuradha Chug (Guru Gobind Singh Indraprastha University)
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제16권 제4호
발행연도
2020.1
수록면
915 - 934 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Software refactoring is a process to restructure an existing software code while keeping its external behavior the same. Currently, various refactoring techniques are being used to develop more readable and less complex codes by improving the nonfunctional attributes of software. Refactoring can further improve code maintainability by applying various techniques to the source code, which in turn preserves the behavior of code. Refactoring facilitates bug removal and extends the capabilities of the program. In this paper, an exhaustive review is conducted regarding bad smells present in source code, applications of specific refactoring methods to remove that bad smell and its effect on software quality. A total of 68 studies belonging to 32 journals, 31 conferences, and 5 other sources that were published between the years 2001 and 2019 were shortlisted. The studies were analyzed based on of bad smells identified, refactoring techniques used, and their effects on software metrics. We found that “long method”, “feature envy”, and “data class” bad smells were identified orcorrected in the majority of studies. “Feature envy” smell was detected in 36.66% of the total shortlisted studies. Extract class refactoring approach was used in 38.77% of the total studies, followed by the move method and extract method techniques that were used in 34.69% and 30.61% of the total studies, respectively. The effectsof refactoring on complexity and coupling metrics of software were also analyzed in the majority of studies, i.e., 29 studies each. Interestingly, the majority of selected studies (41%) used large open source datasets written in Java language instead of proprietary software. At the end, this study provides future guidelines for conductingresearch in the field of code refactoring.

목차

등록된 정보가 없습니다.

참고문헌 (73)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0