메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Eun-Ho Kim (SungKyunkwan University) Sang-Hyeon Bae (SungKyunkwan University) Tae-Young Kuc (SungKyunkwan University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
982 - 985 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Mobile service robot multi-floor navigation is a challenging issue for in indoor robot navigation, especially when moving between floors, entering and leaving elevator. So, in this paper we propose detection and recognition method of elevator features and robot navigation for entering and leaving the elevator. Thus, in this paper we propose a method which uses deep learning. Based image recognition system to identify particular floor from an elevator display. Using this method robot determines whether particular floor has reached. We proposed two-fold methods to accomplish our goal. On the first method we performed the extraction of elevator button coordinates through traditional feature extractor such as adaptive thresholding, blob detection, template matching. The next part of our approach is by using DL-based recognition, done by YOLO 9000 on the floor count display panel of the elevator. From our analysis of these above mentioned methods we discovered that the feature extractor out-performs the DL-based recognition system even in the tricky conditions. Such as lighter reflection, motion blur etc. and proves to be more robust system for detection and recognition.

목차

Abstract
1. INTRODUCTION
2. OVERVIEW OF ROBOT AND NAVIGATION ENVIRONMENT
3. ROBOT ENTERING SEQUENCE
4. ROBOT LEAVING SEQUENCE
5. EXPERIMENT AND RESULT
6. CONCLUTION AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001569145