메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lobosco, Raquel J. (Themal and Fluids Laboratory, Rio de Janeiro Federal University, Macae Campus) da Fonseca, David O. (Themal and Fluids Laboratory, Rio de Janeiro Federal University, Macae Campus) Jannuzzia, Graziella M.F. (Field Testing and Instrumentation Laboratory Prof Marcio Miranda Soares, COPPE and Rio de Janeiro Federal University) Costa, Necesio G. (Themal and Fluids Laboratory, Rio de Janeiro Federal University, Macae Campus)
저널정보
테크노프레스 Coupled systems mechanics Coupled systems mechanics 제8권 제4호
발행연도
2019.1
수록면
339 - 350 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A numerical simulation of the incompressible multiphase hydraulic jump flow was performed to compare the interface prediction through the use of the three RANS turbulence models: $k-{\varepsilon}$, $RNGk-{\varepsilon}$ and SST $k-{\omega}$. A three dimensional no submerged hydraulic jump and a two dimensional submerged hydraulic jump were modeled. Both the geometry and the mesh were created using the open source Gmsh code. The project's geometry consists of a rectangular channel with length and height differences between the two dimensional and three dimensional simulations. Uniform hexahedral cells were used for the mesh. Three refining meshes were constructed to allow to verify simulation convergence. The Volume of Fluid (abbr. VOF) method was used for treatment of the air-water surface. The turbulence models were evaluated in three distinct set up configurations to provide a greater accuracy in the flow representation. In the two-dimensional analysis of a submerged hydraulic jump simulation, the turbulence model RNG RNG $k-{\varepsilon}$ provided a better interface adjust with the experimental results than the model $k-{\varepsilon}$ and SST $k-{\omega}$. In the three-dimensional simulation of a no-submerged hydraulic jump the k-# showed better results than the SST $k-{\omega}$ and RNG $k-{\varepsilon}$ capturing the height and length of the ledge with a better fit with the experimental results.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0