메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kwon Oh-Wook (Chungbuk National University) Chan Kwokleung (University of California) Lee Te-Won (University of California)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제24권 제4호
발행연도
2005.1
수록면
144 - 151 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We evaluate the performance of emotion recognition via speech signals when a plain speaker talks to an entertainment robot. For each frame of a speech utterance, we extract the frame-based features: pitch, energy, formant, band energies, mel frequency cepstral coefficients (MFCCs), and velocity/acceleration of pitch and MFCCs. For discriminative classifiers, a fixed-length utterance-based feature vector is computed from the statistics of the frame-based features. Using a speaker-independent database, we evaluate the performance of two promising classifiers: support vector machine (SVM) and hidden Markov model (HMM). For angry/bored/happy/neutral/sad emotion classification, the SVM and HMM classifiers yield $42.3\%\;and\;40.8\%$ accuracy, respectively. We show that the accuracy is significant compared to the performance by foreign human listeners.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0