메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Euihwan Han (Graduate School of Soongsil University) Hyungtai Cha (Soongsil University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.3
발행연도
2020.6
수록면
185 - 192 (8page)
DOI
10.5573/IEIESPC.2020.9.3.185

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The issue of emotion recognition has received considerable critical attention in artificial intelligence and machine learning. In sentiment analysis fields, researchers recognize emotional states from speech, electroencephalograms, and images, etc. The speech signal is among the most widely used in emotion recognition. There are many speech features, including pitch, energy, linear prediction coefficients, mel-frequency cepstral coefficients, and the Teager energy operator. In this study, we explore the critical speech features for sentiment analysis. We modify our previous feature-generation method, which applies low-variance filtering and principal component analysis (for grouped features) to identify the features. We do not utilize between-class scatter here, but rather, the between class–scatter and within class–scatter ratio. Grouping is achieved according to the number of features—not correlation values. For an objective evaluation, we use the Ryerson Audio-Visual Database of Emotional Speech and Song, with a performance evaluation conducted in terms of classifier accuracy and computational complexity. Finally, we propose an effective feature-generation method to find the critical features for emotion recognition from speech.

목차

Abstract
1. Introduction
2. Related Work
3. Troubleshooting
4. Proposed Algorithm
5. Results and Considerations
6. Conclusions
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-000684353