메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
손호선 (Chungbuk National University) 김경옥 (Woosong College) 차은종 (Chungbuk National University) 김경아 (Chungbuk National University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제69권 제7호
발행연도
2020.7
수록면
1,061 - 1,066 (6page)
DOI
10.5370/KIEE.2020.69.7.1061

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, Numerous data mining methods in the bioinformatics field have been developed for processing biodata. We extracted significant genes (60,483 of gene expression data from TCGA) for the prognosis prediction of 1,157 patients using gene expression data from patients with kidney cancer and applied classification methods based on data mining. Significant genes were extracted using least absolute shrinkage and selection operator (LASSO) and principal component analysis (PCA), and classification accuracy and performance were compared using a classification algorithm. Combined clinical data from patients with kidney cancer and gene data were used to determine the optimal classification model and estimate classification accuracy as risk factors by sample type, primary diagnosis, tumor stage, and vital status representing the state of patients. Classification accuracy based on sample type showed the best performance, particularly for the logistic regression and support vector machine algorithms. These results can be applied to extract biomarkers for prognosis prediction of kidney cancer from various causes and for preventing kidney cancer and early diagnosis.

목차

Abstract
1. 서론
2. 본론
3. 결과
4. 고찰 및 결론
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-560-000860423