메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조규원 (고려대학교) 강필성 (고려대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제46권 제3호
발행연도
2020.6
수록면
190 - 199 (10page)
DOI
10.7232/JKIIE.2020.46.3.190

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
The size of the domestic webtoon market is growing rapidly. The webtoon industry is a representative contents industry. Through the One Source Multi-Use (OSMU) of webtoon contents, attempts to converge with other content industries such as movies and dramas and to create new added value are gradually accelerating. Predicting webtoons with high OSMU potential can contribute to increasing the probability of successful convergence of the content industry in that digital content can be converged between multiple content industries through a single digital content. In this study, 5 machine learning based prediction models were constructed for 1,559 webtoons uploaded to Naver and Daum sites to predict the OSMU possibility of webtoons. In addition, to use webtoon images, ‘representative colors’ and ‘representative sentiment’ derived variables were created. As a result of evaluation, it was confirmed that it is possible to construct a predictive model with an accuracy of up to 72%.

목차

1. 서론
2. 데이터 수집
3. 데이터 전처리 및 파생변수 생성
4. 실험 및 평가
5. 예측 결과 분석
6. 결론
참고문헌

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-530-000679500