메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이완곤 (숭실대학교) 박영택 (숭실대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.42 No.7
발행연도
2015.7
수록면
852 - 859 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 지식 정보의 양이 방대해지면서, 대용량 온톨로지를 효과적으로 추론하는 연구가 활발히 진행되고 있다. 이러한 추론 방법들은 TBox 분류와 ABox 실체화로 나누어진다. TBox 추론은 스키마의 무결성과 종속성을 주로 다룬다면, ABox 추론은 인스턴스 위주의 다양한 문제를 다루어서 실제 응용에서의 중요성이 매우 크다. 따라서 본 논문은 클래스의 제약 조건을 분석하고, 이를 통해 인스턴스가 속하는 클래스를 추론할 수 있는 방법을 제안한다. 객체 지향 언어 기반의 분산 파일 시스템을 활용했던 기존 방법과 달리 함수형 프로그래밍 기반의 인 메모리 시스템인 스파크를 통해 대용량 온톨로지 실체화 방법에 대해서 설명한다. 제안하는 기법의 효율성을 검증하기 위해 W3C의 Wine 온톨로지를 이용해 인스턴스를 생성(1억 2천만~6억개의 트리플)하고 실험을 수행하였다. 6억개의 트리플을 대상으로 진행한 실험의 경우 전체 추론 시간이 51분(696 K Triple/sec)이 소요되었다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 스파크 프레임워크 기반의 추론 엔진
4. ABox 실체화
5. 연구내용
6. 실험 및 평가
7. 결론 및 향후 연구
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001673911