메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이완곤 (숭실대학교) 방성혁 (숭실대학교) 박영택 (숭실대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.4
발행연도
2017.4
수록면
383 - 391 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
빅데이터 시대가 도래 하면서 시맨틱 데이터의 양이 빠른 속도로 증가하고 있다. 이러한 대용량 시맨틱 데이터에서 의미 있는 암묵적 정보를 추론하기 위해서 지식 사용자의 경험적 지식을 기반으로 작성된 SWRL(Semantic Web Rule Language) 규칙들을 활용하는 많은 연구가 진행되고 있다. 그러나 기존의 단일 노드의 추론 시스템들은 대용량 데이터 처리에 한계가 있고, 다중 노드 기반의 분산 추론 시스템들은 네트워크 셔플링으로 인해 성능이 저하되는 문제점들이 존재한다. 따라서 본 논문에서는 기존 시스템들의 한계를 극복하고 보다 효율적인 분산 추론 방법을 제안한다. 또한 네트워크 셔플링을 최소화 할 수 있는 데이터 파티셔닝 전략을 소개하고, 점증적 추론에서 사용되는 추가된 새로운 데이터의 선별과 추론 규칙의 순서결정으로 추론 과정을 최적화 할 수 있는 방법에 대해 설명한다. 제안하는 방법의 성능을 측적하기 위해 약2억 트리플로 구성된 WiseKB 온톨로지와 84개의 사용자 정의 규칙을 이용한 실험에서 32.7분이 소요되었다. 또한 LUBM 벤치 마크 데이터를 이용한 실험에서 맵-리듀스 방식에 비해 최대 2배 높은 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. SWRL 기반의 분산 추론 시스템
4. 점진적(Incremental) 추론
5. 실험
6. 결론
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0