메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최숙남 (영남대학교) 신광호 (KIST) 정현열 (영남대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제14권 제10호
발행연도
2011.10
수록면
1,221 - 1,228 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
일반적인 음성인식 시스템은 보통 실내 환경에서는 잘 동작하지만 잡음이 존재하는 실제 환경에서는 여러 가지 잡음의 영향으로 그 성능이 급격히 떨어진다. 본 논문에서는 잡음환경에 강인한 음성인식을 위하여 훈련 환경과 실제 환경의 불일치를 줄이기 위한 방법으로 캡스트럼 거리기반 묵음특징 정규화(CSFN: Cepstral distance based SFN) 방법에 캡스트럼 정규화 방법(CMVN:cepstral mean and variance normalization)을 결합한 CSFN-CMVN 방법을 제안하였다. 이 방법은 캡스트림 특징의 분포 특성의 차이를 나타내는 캡스트럼 유클리디언 거리를 결합하여 음성/묵음 분류에 사용하여 묵음특징을 정규화하는 CSFN 방법에 캡스트럼 정규화 방법을 결합하는 방법이다. Aurora 2.0 DB를 이용한 실험결과, 제안한 CSFN-CMVN은 기존의 대표 적인 묵음특징 정규화 방법인 SFN-I 과 비교했을 때 모든 테스트 세트에 대한 평균 단어인식 정확도에서 약 7%의 인식률 향상을 가져옴을 확인하였다. 또한, 기존의 SFN-II,CSFN에 비해서도 약 6%, 5% 향상되었음을 확인 할 수 있어 제안한 방법의 유효성을 확인할 수 있었다.

목차

요약
ABSTRACT
1. 서론
2. 기존연구
3. 제안 방법
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-004-001291957