메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문은 스마트 홈과 같이 다양한 센서 및 제어 네트워크가 밀집되어 있는 유비쿼터스 환경 하에서 복잡한 인터페이스의 사용에 대한 사용자의 인지 부담(cognitive load)을 줄이고, 개인화된(personalized) 서비스를 자율적으로 제공하기 위한 새로운 사용자 행동 패턴 선호도 학습 기법을 제안한다. 이를 위해 지식 발견(knowledge discovery)을 위한 평생 학습 (life-long learning)의 관점에서 퍼지 귀납(fuzzy inductive) 학습 방법론을 제안하며, 이것은 수치 데이터로부터 압력 공간에 대한 효율적인 퍼지 분할(fuzzy partition)을 얻어내고 일관성 있는(consistent) 퍼지 상관 룰(fuzzy association rule)을 얻어내도록 한다.

목차

요약
Abstract
1. 서론
2. 배경 지식
3. 퍼지 귀납 학습 시스템
4. 시뮬레이션 결과
5. 결론
참고문헌
저자소개

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014963190