메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제16권 제6호
발행연도
2006.12
수록면
716 - 720 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
퍼지 이론을 이용하면 여러 정보를 통합 요약하기에 수월하여, 웹상에서 사용자에게 제공할 정보를 가공하는 방법으로 많이 사용되고 있다. 하지만 퍼지의 애매모호한 특성 때문에 사용자에게 맞게 퍼지 집합으로 표현된 같은 정보라 하여도 사용자마다 자신의 퍼지값 선호도에 따라 다른 선택을 할 수 있다. 따라서 애매한 퍼지값을 선택함에 있어 사용자의 퍼지값에 대한 선호도를 반영할 필요가 있다. 그러나 기존의 방법들은 정해진 기준을 획일적으로 적용하여, 사용자의 개인적인 선택 기준을 반영하지 못하는 문제가 있다.
본 논문에서는 사용자의 선호도를 학습하여, 사용자의 선호도에 맞는 정보를 선택하는 방법을 제안한다. 사용자의 선호도를 학습하기 위해서 학습 데이터가 필요한데, 이 데이터는 사용자에게 직접 물어 사용자의 선호도를 얻는데 사용된다. 이때, 사용자에게 너무 많은 데이터로 질문을 한다면, 사용자에게 부담을 줄 수 있고, 또 너무 적은 데이터를 사용한다면, 학습을 잘 못하는 경향이 생길 수 있다. 이러한 문제에 대처하기 위해서 10개 정도의 데이터를 이용하여 사용자의 선호도를 학습하는 방법을 제안한다. 제안하는 방법은 먼저 두 퍼지값이 서로 겹칠 수 있는 모든 경우의 상대적 위치를 조사한 후 클러스터링을 이용하여 몇 가지 그룹으로 나누고, 나누어진 그룹을 이용하여 학습하였다. 이렇게 학습된 모델은 새로운 애매하게 겹치는 퍼지값에 대해 사용자를 대신해 어느 것을 어느 정도 선호하는지 추론하게 된다.

목차

요약
Abstract
1. 서론
2. 데이터 선정 조건 및 클러스터링
3. 학습 및 실험
4. 결론
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014949767