메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 웹 상에 정보가 폭발적으로 증가함에 따라, 사용자의 취향에 맞는 정보를 선별하여 제공하는 추천시스템에 대한 연구가 활발히 진행되고 있다. 추천시스템은 사용자의 관심정보를 기술한 사용자 프로파일을 기반으로 동작하기 때문에 정확한 사용자 프로파일의 생성은 매우 중요하다. 사용자의 암시적인 행동정보를 기반으로 취향을 분석하는 대표적인 연구로 사용자가 이용한 웹 문서를 분석하는 방법이 있다. 이는 사용자가 이용하는 웹 문서에 빈번하게 등장하는 단어를 기반으로 사용자의 프로파일을 생성하는 것이다. 그러나 최근 웹 문서는 사용자 취향과 관련 없는 많은 구성요소들(로고, 저작권정보 등)을 포함하고 있다. 따라서 이러한 내용들을 모두 포함하여 웹 문서를 분석한다면 생성되는 프로파일의 정확도는 낮아질 것이다. 따라서 본 논문에서는 사용자 기기에서 사용자의 웹 문서 이용내역을 분석하고, 동일한 사이트로부터 얻어진 문서들에서 반복적으로 등장하는 블록을 제거한 후, 정보블럭을 식별하여 사용자의 관심단어를 추출하는 새로운 프로파일 생성방법을 제안한다. 이를 통해 보다 정확하고 빠른 프로파일 생성이 가능해진다. 본 논문에서는 제안방법의 평가를 위해, 최근 구매활동이 있었던 사용자들이 이용한 웹 문서 데이터를 수집하였으며, TF-IDF방법과 제안방법을 이용하여 사용자 프로파일을 각각 추출하였다. 그리고 생성된 사용자 프로파일과 구매데이터와의 연관성을 비교하였으며, 보다 정확한 프로파일이 추출되는 결과와 프로파일 분석시간이 단축되는 결과를 통해 제안방법의 유효성을 입증하였다.

목차

요약
1. 서론
2. 관련연구
3. 제안시스템
4. 구현 및 평가
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015985932