메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 다양한 형식의 웹 문서에서 사용자가 원하는 정보만을 검색 하기위해 웹 문서를 주제별로 분류하여 수집하고, 관리하는 것은 필수적인 요소이다. 즉, 정확하고 빠른 정보 검색을 위한 웹 문서 수집은 문서 형식에 따라 분류되어 수집 되어야 한다. 따라서 웹 환경에서 문서를 구성하는 형식을 텍스트나 이미지 데이터로 구분하고 그 형식에 맞는 분류기법을 사용한다면 정확한 정보 검색이 이루어 질수 있다. 본 논문에서는 텍스트와 URL을 이용한 주제 중심의 하이브리드 웹 문서 분류 방법을 제안한다. 텍스트와 URL을 이용한 분류 방법은 텍스트 형식은 주제 중심의 문서 분류방식을 사용하며, 텍스트 정보의 효용성이 낮은 경우 URL의 주제 분포도를 이용하여 분류하며 수집한다. 이를 통해 여러 가지 형식의 웹 문서가 분류 가능하며, 주제에 따른 문서 분류의 정확도가 높아진다.

목차

요약
1. 서론
2. 관련 연구
3. 하이브리드 방식의 웹 문서 분류기
4. 실험
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017398160