메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
오늘날 웹의 비약적인 성장으로 텍스트, 이미지, 비디오, 그리고 사운드 등의 다양한 데이터 형식의 많은 정보가 축적되었으며 날마다 늘어나고 있다. 이들 정보의 효율적 검색을 위해 많은 연구가 이루어졌으며, 특히 텍스트 문서의 효율적인 검색을 위해 확률을 이용한 방법, 통계적인 기법을 이용한 방법, 벡터유사도를 이용한 방법, 베이지안 자동문서 분류 방법 등이 제안되었다. 그러나 이러한 기존의 방법들은 문서의 특징을 정확하게 반영할 수 없고, 의미적 검색이 이루어지지 않는 단점을 가지고 있다. 이에 본 논문은 문서를 미리 분류하는 기존의 방법을 개선하기 위해, 사용자가 원하는 문서와 비슷한 문서를 의미적으로 찾아내기 위한 방법을 제안한다. 본 방법론은 문서의 내용을 의미적인 계층으로 표현하고 중요 도메인에 가중치를 두어 각 문서들의 계층들의 도메인 비중과 도메인 내의 개념 일치도를 이용하여 문서들 간에 유사도를 구한다.

목차

요약
1. 서론
2. 관련연구
3. 문서의 계층화 방법 및 계층 비교 방법
4. 결론 및 향후 연구방향
감사의 글
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017397663