메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

정동민 (고려대학교, 高麗大學校 大學院)

지도교수
朱英奎
발행연도
2019
저작권
고려대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
The recent earthquake of Pohang (M5.4) and the Gyeongju earthquake (M5.8) suggested the possibility of a strong earthquake in Korea and reminded us that the Korea is no longer an earthquake-safe zone. In the disaster recovery stage in a disaster like an earthquake, the investigation of the damage situation and the safety assessment of the building serve to provide important information for the initial action such as establishment of the recovery strategy and rescue of the survivor. However, the research that depends on manpower can not cope with the difficulty of processing a large number of doses in a short time, and the expertise of the manpower must be taken into consideration, which may result in delayed initial action. The purpose of this study is to develop the SMART SKY EYE system for the rapid structural safety evaluation method of buildings using the unmanned aerial vehicle and the infrared module. After developing the necessary technology for the safety inspection using the unmanned aerial vehicle, I proposed SMART SKY EYE System which is an rapid structural safety evaluation technology for building using unmanned aerial vehicle and infrared module that evaluates the performance and safety of buildings by integrating existing safety inspection method and evaluation standard with unmanned aerial vehicle technology and constructed defect detection algorithm. I propose a 4-step check process for structural fault detection, displacement measurement, 3D reconstruction (3D representation), safety grade designation and evaluation. By using the unmanned aerial vehicle, the existing safety inspection process was reconstructed and the possibility of the inspection technology development was confirmed. Also in this paper, the proposed protocol was verified by applying it to existing old buildings, and defect information could be quantified by calculating length, width, and area for each defect. 3D modeling was performed using the aerial photographs obtained from the unmanned aerial vehicle and high resolution images of a level enough for visual inspection were obtained through image search. Compared with the visual inspection of the existing safety inspection, I confirmed the feasibility of defect tracking management through visual data collection and data accumulation.
Experimental study was carried out to develop concrete crack depth assessment method using infrared thermography. BIG DATA was constructed through data collection of thermal image and variables and analyzed through machine learning. Among the five algorithms constructed, the prediction accuracy of the crack depth was 72% when random forest (RandomForest) was implemented, and the prediction accuracy was 89% when it was recognized up to the adjacent depth (Class) Respectively. Therefore, this algorithm can confirm the possibility of crack depth information prediction by using thermal image. The crack depth information obtained by this algorithm is combined with the real image shown in the previous chapter and the damage information data (crack width, crack length, etc.) obtained through 3D modeling to construct the damage information integration system of the building including the crack depth information And can be used to build an emergency inspection platform using unmanned aerial vehicles.
In order to verify this, the buildings damaged by the earthquake in Pohang were checked and compared using this system. The factors necessary for the assessment of buildings damaged by earthquakes, such as appearance defects, slope and subsidence, and the risk of falling objects, were investigated and evaluated. As a result of the evaluation, all buildings showed a danger level, and the results are consistent with the results of the existing emergency earthquake risk assessment. As a result, the possibility of checking the emergency safety using the unmanned aerial vehicle for the damaged structures in case of a large-scale disaster such as an earthquake was confirmed. The results are consistent with the results of the existing emergency earthquake risk assessment. As a result, the possibility of checking the emergency safety using the unmanned aerial vehicle for the damaged structures in case of a large-scale disaster such as an earthquake was confirmed.

목차

제1장 서론 1
1.1 연구 배경 1
1.2 연구 내용 및 범위 4
1.3 논문 구성 5
제2장 기존 연구 동향 분석 7
2.1 안전점검 및 정밀안전진단 7
2.2 무인비행체 활용 구조물 안전점검 14
2.2.1 시각의존성 점검 방법 14
2.2.2 컴퓨팅 기술 융합 점검 방법 17
2.2.3 추가장비 활용 점검 방법 20
2.3 적외선 열화상 기법 활용 비파괴검사 22
2.4 소결 25
제3장 SMART SKY EYE 건축물 긴급 위험도 평가 27
3.1 SMART SKY EYE 건축물 긴급 결함탐지 기술 27
3.2 SMART SKY EYE System 특징 28
3.3 SMART SKY EYE 점검 방법 30
3.3.1 이론적 근거 30
3.3.1.1 3D Reconstruction (3D 재현) 30
3.3.1.2 적외선 열화상 기법 및 머신러닝 활용 결함 검출 33
3.3.2 긴급 위험도 평가 프로세스 39
제4장 사진측량법 활용 무인비행체 건축물 균열도 작성법 42
4.1 개요 42
4.2 무인비행체 건축물 외관조사 프로토콜 43
4.3 사진측량법 활용 콘크리트 균열 정보 검출법 47
4.4 기존 건축물 외관손상 평가 51
4.4.1 장비 51
4.4.2 대상 건축물 선정 52
4.4.3 촬영계획 53
4.5 외관손상 평가 결과 54
4.5.1 항공촬영 결과 54
4.5.2 균열도 작성결과 55
4.6 결과 분석 56
4.6.1 측정 정확도 56
4.6.1.1 균열 길이 56
4.6.1.2 균열 폭 57
4.6.1.3 손상 면적 58
4.6.2 측정 해상도 58
4.7 소결 60
제5장 무인비행체 활용 건축물 긴급 안전도 평가 62
5.1 개요 62
5.2 국내외 긴급 위험도 평가법 63
5.2.1 미국(ATC-20, 2005) 63
5.2.2 일본(JBDPA, 2015) 64
5.2.3 국내 기준 (국립재난안전연구원, 2011) 64
5.3 무인비행체 활용 긴급 위험도 평가법 및 프로세스 65
5.3.1 긴굽 위험도 평가 프로세스 65
5.3.2 무인비행체 활용 정량적 요소 평가법 67
5.3.2.1 건축물 기울기 측정법 67
5.3.2.2 수직변위 측정법 68
5.3.3 정량적 요소 평가법 검증 69
5.3.3.1 대상 건축물 69
5.3.3.2 무인비행체 활용 정량적 요소 평가법 적용 결과 70
5.3.4 3D 모델 활용 정성적 요소 평가법 71
5.4 P시 지진 피해 건축물 현장조사 71
5.4.1 촬영장비 71
5.4.2 촬영 계획 72
5.4.2.1 A 아파트 72
5.4.2.2 B 빌라 72
5.4.3 SMART SKY EYE 긴급 위험도 평가 적용 결과 73
5.4.3.1 A 아파트 73
5.4.3.2 B 빌라 75
5.4.4 포인트 클라우드 구성 및 측정 정확도 77
5.5 소결 78
제6장 적외선 열화상 기법 활용 콘크리트 균열 깊이 평가법 80
6.1 개요 80
6.2 실험체 계획 및 제작 82
6.2.1 연구 기본가정 81
6.2.2 실험체 계획 81
6.3 적외선 열화상 촬영 84
6.3.1 적외선 열화상 촬영 시스템 84
6.3.2 적외선 열화상 촬영 계획 86
6.4 머신 러닝(Machine Learning) 활용 균열 깊이 예측 시스템 87
6.4.1 의사 결정 나무(Decision Tree) 88
6.4.2 랜덤포레스트(RandomForest) 89
6.4.3 에이다부스트(AdaBoost) 90
6.4.4 가우시안 나이브 베이즈(GaussianNB) 91
6.4.5 서포트 벡터 머신(SVM) 91
6.5 적외선 열화상 이미지 분석 결과 92
6.5.1 온도 분석 파악 열화상 이미지 분석 92
6.5.1.1 일사량 누적 영향 92
6.5.1.2 직사광선 영향 93
6.5.1.3 열화상 이미지 균열 깊이 정량적 분석 94
6.5.2 적외선 열화상 이미지 BIG DATA화 95
6.5.2.1 BIG DATA 변수 분석 95
6.5.2.2 열화상 기법 활용 균열깊이 예측 BIG DATA 구축 99
6.6 머신러닝 분석 활용 균열 깊이 예측 100
6.7 소결 103
제7장 결론 104
참고문헌 106

최근 본 자료

전체보기

댓글(0)

0