메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Haesong Cho (Seoul National University of Science & Technology) Sung-Wook Yi (Seoul National University of Science & Technology) Do-Hoon Kwon (Seoul National University of Science & Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,797 - 1,801 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The South Korea’s government declared that it will increase renewable power’s share of the energy mix from its current level of 7 % to 20 % by 2030. An increase of the renewable power means that fluctuations and uncertainties of power generation are increased, which brings new challenges of power network stability analysis to the system operators. This paper presents a one of the methods for power network stability analyses considering the uncertainty of large renewable power generations in the Korea Electrotechnology Research Institute (KERI). The proposed method forecasts the renewable power generations with probabilistic ranges instead of a point prediction for next time step. A power network modelling is then conducted automatically several times using forecasted loads and the renewable power generations having probabilistic ranges. Finally, the power network stability analyses are conducted automatically for every forecasted power network models. The results are obtained by number of violations related to transmission line overloads and under- or over-voltage buses as well as fault currents of several buses. Simulation case studies are performed using a PSS/E and the case study results confirm that the proposed method successfully conducts the power network stability analyses considering the uncertainty of large renewable power generations.

목차

Abstract
1. INTRODUCTION
2. Power network stability analysis for large renewable powers
3. Case studies and results
4. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088266508