메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yuta Sadamatsu (Kyushu Institute of Technology) Seiichi Murakami (Junshin Gakuen University) Li Guangxu (Tiangong University) Tohru Kamiya (Kyushu Institute of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,737 - 1,740 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Radiation is widely used in medicine to diagnose and treat disease. CT (Computed Tomography) scans allow early detection of externally invisible diseases and appropriate treatment. However, radiation exposure from the examination may result in a future risk of cancer. Efforts are therefore being made to reduce radiation exposure. During the examination, noise is generated in the image when the dose is reduced. Noise reduces the visibility of the image and may cause lesions to be missed. In this study, we focus on Convolutional Neural Networks (CNNs), a type of deep learning model that has recorded high accuracy in image processing tasks. The proportion of frequency components in
an image has more low-frequency components and fewer high-frequency components. Since image features are treated equally across channels, important information such as noise and edges are easily lost. To solve this problem, we propose CNN with channel attention module. In addition, we employ MAE as the loss function to enable effective learning. Using whole body slice CT images of pigs, we evaluate the image quality by Peak Signal-to-Noise Ratio (PSNR) and show that the proposed method is effective.

목차

Abstract
1. INTRODUCTION
2 METHODS
4. EXPERIMENT AND RESULTS
4. DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088266400