메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김도희 (숭실대학교) 김명호 (숭실대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2023년 한국컴퓨터정보학회 하계학술대회 논문집 제31권 2호
발행연도
2023.7
수록면
51 - 54 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 딥러닝 기술의 발달로 물체 탐지를 위한 객체 인식 분야가 기계학습을 접목한 연구가 급격히 증가하고 있다. 하지만, 탐지하려는 물체가 다른 객체에 가려진 경우와 같이 특수한 상황에 대한 데이터의 수량이 부족하여 성능 저하를 야기한다는 점과, 객체 탐지 수행 과정에서 작은 객체의 탐지가 어렵다는 한계점이 있다. 본 연구는 전술한 문제점을 보완할 방법을 제안한다. 데이터 증강 기법을 이용하여 클래스가 부족한 데이터의 양을 늘려 학습 데이터를 증강시켰다. 한편, SRGAN을 사용하여 작은 객체를 확대시킨 뒤 이미지를 합성시켜 데이터를 구성하였다. 제안된 방법은 PyTorch 환경에서 YOLOv5를 수행한 결과, 객체 탐지 성능이 향상되는 것을 확인할 수 있었다.

목차

요약
I. Introduction
II. Related works
III. The Proposed Scheme
IV. Results and Discussions
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-004-001646715