메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최이수 (LG에너지솔루션) 윤주호 (한양대학교) 김병훈 (한양대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제49권 제4호
발행연도
2023.8
수록면
330 - 343 (14page)
DOI
10.7232/JKIIE.2023.49.4.330

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
This study proposes a wafer defect pattern clustering model that can recognize defect patterns without the class label of the defect patterns. In the first step, noise defects are removed from each wafer bin map (WBM) image using the Depth-First Search (DFS) algorithm to clarify the defect pattern. Next, the defect patterns are clustered using the Dirichlet process, and the clustering results are adjusted by tuning the extracted features based on self-supervised learning. By employing a weighted cross-entropy loss that considers the cluster size, the model becomes robust to the imbalance of cluster sizes during the fine-tuning process. The proposed method can facilitate the identification and resolution of the causes of defects that occur during semiconductor processing.

목차

1. 서론
2. 관련 연구
3. 제안 방법론
4. 실험 및 평가
5. 결론
참고문헌

참고문헌 (27)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-530-001919281