메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신병규 (경희대학교) 이병현 (경희대학교) 김기휘 (경희대학교) 권우철 (경희대학교) 김재경 (경희대학교)
저널정보
한국경영과학회 한국경영과학회지 韓國經營科學會誌 第48卷 第2號
발행연도
2023.5
수록면
1 - 19 (19page)
DOI
10.7737/JKORMS.2023.48.2.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Since a business model is described as a key element for generating a company"s value and profit, companies try to utilize their innovative business model to secure a competitive advantage in the market. Therefore, companies spend tremendous amounts of time and expenses on business consulting. In reality, however, it is a dire circumstance for small and medium-sized enterprises (SMEs) with insufficient finances to receive such business consultations. The purpose of this study is to suggest a new, smart consulting method that will allow SMEs to be able to self-diagnose their business models. Prior to the experiment, 542 IT companies and 506 construction manufacturing business model canvases were collected. A fine-tuned BERT model was used to predict scores for each of the nine factors that constitute the business model canvas of IT companies and that of construction manufacturing industries. As a result, in the case of 5 labels evaluated from A to E, the average accuracy of the manufacturing industry and that of the IT companies were 0.606 and 0.508, respectively. In addition, the results from the proximity label prediction indicated that the average accuracy of the manufacturing industry and the IT companies were 0.933 and 0.933, respectively, which are in close approximation to the ones of expertise. Therefore, it is a definite prospect for SMEs to identify the strengths and improvements of their business models at low cost using the suggested model. We believe that this study will contribute to SMEs to further develop and thus become sustainable in the future.

목차

Abstract
1. 서론
2. 이론적 배경
3. 연구 방법
4. 연구 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-325-001544783