메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍성규 (Kookmin University) 김상철 (Kookmin University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제4호(통권 제229호)
발행연도
2023.4
수록면
1 - 11 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 순환 신경망 대신 합성곱 신경망을 사용하여 시계열 데이터 분류 성능을 분석한다. TSC(Time Series Community)에는 GAF(Gramian Angular Field), MTF(Markov Transition Field), RP(Recurrence Plot)와 같은 전통적인 시계열 데이터 이미지화 알고리즘들이 있다. 실험은 이미지화 알고리즘들에 필요한 하이퍼 파라미터들을 조정하면서 합성곱 신경망의 성능을 평가하는 방식으로 진행된다. UCR 아카이브의 GunPoint 데이터셋을 기준으로 성능을 평가했을 때, 본 논문에서 제안하는 STFT(Short Time Fourier Transform) 알고리즘이 최적화된 하이퍼 파라미터를 찾은 경우, 기존의 알고리즘들 대비 정확도가 높고, 동적으로 feature map 이미지의 크기도 조절가능하다는 장점이 있다. GAF 또한 98~99%의 높은 정확도를 보이지만, feature map 이미지의 크기를 동적으로 조절할 수 없어 크다는 단점이 존재한다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Experiments
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0