메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Pareto distribution is important to analyze data in actuarial sciences, reliability, finance, and climatology. In general, unknown parameters of the Pareto distribution are estimated based on the maximum likelihood method that may yield inadequate inference results for small sample sizes and high percent censored data. In this paper, a new approach based on the regression framework is proposed to estimate unknown parameters of the Pareto distribution under the progressive Type-II censoring scheme. The proposed method provides a new regression type estimator that employs the spacings of exponential progressive Type-II censored samples. In addition, the provided estimator is a consistent estimator with superior performance compared to maximum likelihood estimators in terms of the mean squared error and bias. The validity of the proposed method is assessed through Monte Carlo simulations and real data analysis.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001573923