메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Tae‑Woon Hong (Seoul National University of Science and Technology) Sang‑In Lee (Seoul National University of Science and Technology) Jae‑Hyeok Shim (Korea Institute of Science and Technology) Myoung‑Gyu Lee (Seoul National University) Joonho Lee (Korea University) Byoungchul Hwang (Seoul National University of Science and Technology)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.27 No.10
발행연도
2021.10
수록면
3,935 - 3,944 (10page)
DOI
10.1007/s12540-021-00982-z

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
An artificial neural network (ANN) model was developed to predict the tensile properties as a function of alloying elementand microstructural factor of ferrite-pearlite steels. The input parameters of the model were composed of alloying elements(Mn, Si, Al, Nb, Ti, and V) and microstructural factors (pearlite fraction, ferrite grain size, interlamellar spacing, and cementitethickness), while the output parameters of the model were yield strength and tensile strength. Although the ferrite-pearlitesteels have complex relationships among the alloying elements, microstructural factors, and tensile properties, the ANNmodel predictions were found to be more accurate with experimental results than the existing equation model. In the presentstudy the individual effect of input parameters on the tensile properties was quantitatively estimated with the help of theaverage index of the relative importance for alloying elements as well as microstructural factors. The ANN model attemptedfrom the metallurgical points of view is expected to be useful for designing new steels having required mechanical properties.

목차

등록된 정보가 없습니다.

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0