메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이규현 (고려대학교세종캠퍼스) 진서훈 (고려대학교)
저널정보
대한설비관리학회 대한설비관리학회지 대한설비관리학회지 제27권 제1호
발행연도
2022.3
수록면
53 - 62 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
As the untact lifestyle of modern people becomes normal due to the corona pandemic, the importance of leisure life continues to increase. The growth of the game industry, which has better accessibility and convenience, has increased remarkably. The future prospects of game industry are also expected to be large. Therefore, one of the main goals of game companies and game distributors is to settle users who have been brought on the platform. In this study, a method to build a personalized recommendation system based on reviews was presented. Users who wrote reviews on top-rated games were selected as recommended targets, and new popular games were provided as recommended items to induce the settlement of the platform. Game reviews, game information, and user information were collected from Steam platform, a global game distribution platform, and a list of top-rated games was collected from the Steam database. A review similarity-based recommendation model was created using Doc2Vec. By embedding the review using Doc2Vec, similar new popular game reviews were derived.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0