메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김예진 (Handong Global University) 전현직 (Handong Global University) 김영근 (Handong Global University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제71권 제9호
발행연도
2022.9
수록면
1,315 - 1,325 (11page)
DOI
10.5370/KIEE.2022.71.9.1315

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Various machine learning and deep learning methods were proposed to monitor and classify the bearing"s health state using vibration signals since bearing faults are one of the most causes of failure of rotationary machine. The process of diagnosing bearing faults using machine learning is as follows. First, the features, including the fault characteristic of the vibration signals, are extracted, and these features are selected to reduce the dimension of the features. These features are input into the machine learning classifier to diagnose the system"s health. In addition to machine learning methods, CNN, one of the deep learning methods, is widely used. Since the deep learning model extracts features by itself, only the preprocessing process of converting the bearing signals into 2D is needed. The fault classification accuracy of two vibration signal transformation methods as preprocessing methods for the CNN model was compared. This paper compares the bearing fault classification performance of several machine learning commonly used and the CNN model for the lab-made wind turbine machinery testbed. By comparing different feature extraction, feature selection, and classification methods, the most appropriate pipeline is selected for the testbed. Also, grad-cam, an explainable AI(XAI) technique, is applied to interpret the CNN based classification in terms of interested frequency bandwidth. The XAI analysis was verified by designing preprocessing filters based on the grad-cam outputs for enhancing classification performance.

목차

Abstract
1. 서론
2. 관련 연구
3. 하드웨어 및 데이터셋
4. 머신러닝 기반 고장진단 비교연구
5. 딥러닝 기반 고장진단 연구
6. Grad-CAM 결과 검증
7. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-560-001689168