메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
지준범 (한국외국어대학교) 조창래 (한국외국어대학교) 김유준 (국립기상과학원) 박승식 (전남대학교)
저널정보
한국기상학회 대기 대기 Vol.32 No.2
발행연도
2022.6
수록면
119 - 133 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
From 2015 to 2021, high-concentration fine dust episodes with a daily average PM<SUB>2.5</SUB> concentration of 50µg m<SUP>-3</SUP> or higher were selected and classified into 3 types [long range transport (LRT), mixed (MIX) and Local emission and stagnant (LES)] using synoptic chart and backward trajectory analysis. And relationships between the fine particle data (PM<SUB>2.5</SUB> and PM<SUB>10</SUB> concentration and PM<SUB>2.5</SUB>/PM<SUB>10</SUB> ratio) and meteorological data (PBLH, Ta, WS, U-wind, and Rainfall) were analyzed using hourly observation for the classification episodes on the Korean Peninsula and the Seoul metropolitan area (SMA). In LRT, relatively large particles such as dust are usually included, and in LES, fine particle is abundant. In the Korean peninsula, the rainfall was relatively increased centered on the middle and western coasts in MIX and LES. In the SMA, wind speed was rather strong in LRT and weak in LES. In LRT, rainfall was centered in Seoul, and in MIX and LES, rainfall appeared around Seoul. However, when the dust cases were excluded, the difference between the LRT and other types of air quality was decreased, but the meteorological variables (Ta, RH, Pa, PBLH, etc.) were further strengthened. In the case of the Korean Peninsula, it is difficult to find a clear relationship because regional influences (topographical elevation, cities and coasts, etc.) are complexly included in a rather wide area. In the SMA, it is analyzed that the effects of urbanization such as the urban heat island centered on Seoul coincide with the sea and land winds, resulting in a combination of high concentrations and meteorological phenomena.

목차

Abstract
1. 서론
2. 자료 및 방법
3. 결과
4. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-453-001533074