메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, an efficient and simple trigonometric shear deformation theory is presented for thermal buckling analysis of functionally graded plates. It is assumed that the plate is in contact with elastic foundation during deformation. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns. It is assumed that the mechanical and thermal non-homogeneous properties of functionally graded plate vary smoothly by distribution of power law across the plate thickness. Using the non-linear strain-displacement relations, the equilibrium and stability equations of plates made of functionally graded materials are derived. The boundary conditions for the plate are assumed to be simply supported on all edges. The elastic foundation is modelled by two-parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The effects of thermal loading types and variations of power of functionally graded material, aspect ratio, and thickness ratio on the critical buckling temperature of functionally graded plates are investigated and discussed.

목차

등록된 정보가 없습니다.

참고문헌 (56)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0