메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
T. Bui-Tien (University of Transport and Communications) L. Nguyen-Ngoc (University of Transport and Communications) H. Tran-Ngoc (University of Transport and Communications) A. Mai-Duc (University of Transport and Communications) M. Abdel Wahab (Duy Tan University) Huan X. Nguyen (Middlesex University) G. De Roeck (KU Leuven)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.28 No.1
발행연도
2021.1
수록면
1 - 12 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, a novel approach to damage identification in structures using Particle Swarm Optimization (PSO) combined with Artificial neural network (ANN) is proposed. With recent substantial advances, ANN has been extensively utilized in a wide variety of fields. However, because of the application of backpropagation algorithms based on gradient descent techniques, ANN may be trapped in local minima when seeking the best solution. This may reduce the accuracy of ANN. Therefore, we propose employing an evolutionary algorithm, namely PSO to deal with the local minimum problems of ANN. PSO is employed to improve the training parameters of ANN consisting of weight and bias ratios by reducing the deviation between calculated and desired results. These training parameters are then used to train the network. Since PSO applies global search techniques to look for the best solution, it can assist the network in avoiding local minima by looking for a beneficial starting point. In order to assess the effectiveness of the proposed approach, both numerical and experimental models with different damage scenarios are employed. The results show that ANN -PSO not only significantly reduces computational time compared to PSO but also possibly identifies damages in the considered structures more accurately than ANN and PSO separately.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0