메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Park, Joon Kyu (Seoil University) Um, Dae Yong (Korea National University of Transportation)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제39권 제2호
발행연도
2021.4
수록면
103 - 111 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
MMS (Mobile Mapping System) is being used for HD (High Definition) map construction because it enables fast and accurate data construction, and it is receiving a lot of attention. However, research on the use of MMS in the construction field is insufficient. In this study, road surveying and inspection of construction structures were performed using MMS. Through data acquisition and processing using MMS, point cloud data for the study site was created, and the accuracy was evaluated by comparing with traditional surveying methods. The accuracy analysis results showed a maximum of 0.096m, 0.091m, and 0.093m in the X, Y, and H directions, respectively. Each RMSE was 0.012m, 0.015m, and 0.006m. These result satisfy the accuracy of topographic surveying in the general survey work regulation, indicating that construction surveying using MMS is possible. In addition, a 3D model was created using the design data for the underpass road, and the inspection was performed by comparing it with the MMS data. Through inspection results, deviations in construction can be visually confirmed for the entire underground roadway. The traditional method takes 6 hours for the 4.5km section of the target area, but MMS can significantly shorten the data acquisition time to 0.5 hours. Accurate 3D data is essential data as basic data for future smart construction. With MMS, you can increase the efficiency of construction sites with fast data collection and accuracy.

목차

Abstract
1. Introduction
2. MMS Technology
3. Data Acquisition and Trajectory Processing
4. Point Cloud Creation and Data Utilization
5. Conclusions
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0