메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박준용 (수원대학교) 오성권 (수원대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제70권 제3호
발행연도
2021.3
수록면
515 - 525 (11page)
DOI
10.5370/KIEE.2021.70.3.515

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (6)

초록· 키워드

오류제보하기
This study is focused on solution to the problem that may occur due to noise signals when using the image obtained through the conventional partial discharge preprocessing methods as inputs to the CNN-based partial discharge pattern classifier. To solve such problem, a new data preprocessing method is proposed by considering a projection technique. In the data information obtained through the conventional partial discharge preprocessing methods, data information of useless noise signal leads to the problem of performance degradation when constructing highly qualified pattern classifier based on the data information of partial discharge signal. The proposed preprocessing method called as ‘Projection’ in this study is designed to solve this problem and improve a classification performance of CNN-based partial discharge pattern classifier. First of all, through GIS simulation, one-dimensional partial discharge data is obtained as five cases such as corona discharge, floating discharge, insulator discharge, free particle discharge, and steady state (noise) in an environment with a noise signal by using a UHF sensor. After that, by applying the two conventional partial discharge preprocessing methods such as PRPS(Phase Resolved Pulse Sequence), PRPD(Phase Resolved Partial Discharge) and the proposed partial discharge preprocessing method, one-dimensional partial discharge data is transformed into 3 data types such as image set of PRPS, image set of PRPD, and image set of Projection. Finally each image set is used as inputs to the designed CNN-based partial discharge pattern classifier. Through the comparative analysis of the feature maps of each layer in CNN as well as the performance accuracy of partial discharge pattern classification for each image set, the superiority of the proposed preprocessing method is demonstrated.

목차

Abstract
1. 서론
2. CNN기반 부분방전 패턴 분류기 및 데이터 처리
3. 제안된 부분방전 데이터 처리방법
4. 시뮬레이션 및 결과
5. 결론
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0