메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최영재 (Chung-Ang Univ.) 최은지 (Chung-Ang Univ.) 조혜운 (Chung-Ang Univ.) 문진우 (Chung-Ang Univ.)
저널정보
한국생태환경건축학회 KIEAE Journal KIEAE Journal Vol.21 No.1(Wn.107)
발행연도
2021.02
수록면
35 - 40 (6page)
DOI
10.12813/kieae.2021.21.1.035

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Purpose: In this study, an indoor particulate matter (PM<SUB>2.5</SUB>) prediction model was developed to improve air quality in the classrooms. Employing the artificial neural network, the developed model is able to conduct iterative self-training in real-time and adapt itself to the various class environments. Method: A school building, which was used for data acquisition and performance evaluation of predictive model, was modeled by coupling 3 simulation programs to consider various factors that influence the formation of indoor PM<SUB>2.5</SUB> concentration. The ANN prediction model was developed using the Bayseian Regularization learning algorithm following the performance optimization. The optimized prediction model was applied to different classroom in the same building for the adaptive performance evaluation. Result: As a result of the performance evaluation, Cv(RMSE) of the optimized prediction model was 5% and R2 was 0.8757, indicating high accuracy and stability. According to the real-time training, the error gradually decreased after occurrence. Therefore, it was demonstrated that the developed ANN prediction model is able to be adapted to various environmental conditions and expected to be applied in the optimal control algorithm through future research.

목차

ABSTRACT
1. 서론
2. 시뮬레이션 모델링
3. 실내 미세먼지 예측모델 개발
4. 예측모델 최적화 및 성능평가
5. 결론
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-610-001565277