메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
한희일 (한국외국어대학교 공과대학 정보통신공학과)
저널정보
한국인터넷방송통신학회 한국인터넷방송통신학회 논문지 한국인터넷방송통신학회 논문지 제20권 제1호
발행연도
2020.1
수록면
239 - 246 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근에 제안된 WGAN(Wasserstein generative adversarial network)의 등장으로 GAN(generative adversarial network)의 고질적인 문제인 까다롭고 불안정한 학습과정이 다소 개선되기는 하였으나 여전히 수렴이 안되거나 자연스럽지 못한 출력물을 생성하는 등의 경우가 발생한다. 이러한 문제를 해결하기 위하여 본 논문에서는 분별기가 실제 데이터 확률분포를 보다 정확히 추정할 수 있도록 표본화 과정을 개선하는 동시에 분별기 함수의 립쉬츠 연속조건을 안정적으로 유지시키기 위한 알고리즘을 제안한다. 다양한 실험을 통하여 제안 기법의 특성을 분석하고 성능을 확인한다.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0