메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
유승형 (Networking for Information Communications and Energy Lab, Sogang University) 김홍석 (Networking for Information Communications and Energy Lab, Sogang University) 오도은 (KEPCO Research Institute, Korea Electric Power Corporation) 노재구 (KEPCO Research Institute, Korea Electric Power Corporation)
저널정보
한국전력공사 KEPCO Journal on electric power and energy KEPCO Journal on electric power and energy 제2권 제1호
발행연도
2016.1
수록면
61 - 69 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Understanding load patterns and customer classification is a basic step in analyzing the behavior of electricity consumers. To achieve that, there have been many researches about clustering customers' daily load data. Nowadays, the deployment of advanced metering infrastructure (AMI) and big-data technologies make it easier to study customers' load data. In this paper, we study load clustering from the view point of yearly and daily load pattern. We compare four clustering methods; K-means clustering, hierarchical clustering (average & Ward's method) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). We also discuss the relationship between clustering results and Korean Standard Industrial Classification that is one of possible labels for customers' load data. We find that hierarchical clustering with Ward's method is suitable for clustering load data and KSIC can be well characterized by daily load pattern, but not quite well by yearly load pattern.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0