메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김미희 (Hankyong National University) 이기훈 (Hankyong National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제24권 제2호
발행연도
2020.6
수록면
104 - 114 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근, 별도의 센서를 설치하지 않고 센서가 포함된 사용자의 기기로부터 제공되는 실시간 센싱 데이터를 가지고 새로운 센싱 서비스를 제공하는 크라우드센싱(Crowdsensing) 시스템이 주목받고 있다. 크라우드센싱 시스템에서는 사용자의 조작실수나 통신 문제로 인해 의미 없는 데이터가 제공되거나 보상을 얻기 위해 거짓 데이터를 제공할 수 있어 해당 이상 데이터의 탐지 및 제거가 크라우드센싱 서비스의 질을 결정짓는다. 이러한 이상데이터를 탐지하기 위해 제안되었던 방법들은 크라우드센싱의 빠른 변화 환경에 효율적이지 않다. 본 논문은 머신러닝 기술을 활용하여 지속적이고 빠르게 변화하는 센싱 데이터의 특징을 추출하고 적절한 알고리즘을 통해 모델링하여 이상데이터를 탐지하는 방법을 제안한다. 지도학습의 딥러닝 이진분류 모델과 비지도학습의 오토인코더 모델을 사용하여 제안 시스템의 성능 및 실현 가능성을 보인다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 기반 연구
Ⅲ. 제안방법
Ⅳ. 성능평가
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0