메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정찬영 (한국과학기술원) 성현기 (한국과학기술원) 심현철 (한국과학기술원)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제26권 제5호
발행연도
2020.5
수록면
342 - 347 (6page)
DOI
10.5302/J.ICROS.2020.20.0012

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent years, autonomous vehicles have been developed by various approaches for traffic safety and driver convenience. End-to-end learning-based autonomous driving has gained enormous attention in conjunction with deep learning technologies in which perception, planning, and control of the conventional autonomous driving algorithm are trained by a single deep neural network. In this paper, we present the end-to-end learning-based autonomous driving framework. The framework consisted of three parts: data acquisition in real-world and simulated environments, network design and optimization, and performance evaluation. Our framework was integrated on a full-scale autonomous vehicle platform and evaluated with various performance metrics.

목차

Abstract
I. 서론
II. End to End 학습 기반 자율 주행 프레임 워크
III. 실차 기반 자율 주행 실험 플랫폼
IV. 실험 결과
V. 결론
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-000587881