메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
박승환 (성균관대학교) 송두삼 (성균관대학교)
저널정보
대한설비공학회 대한설비공학회 학술발표대회논문집 대한설비공학회 2019년도 하계학술발표대회 논문집
발행연도
2019.6
수록면
637 - 640 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
This study propose a method of predicting the airtightness performance by using the pressure difference, which can replace the conventional blower door test method that can measure the airtightness performance. In order to verify the proposed method in this study, the predicted results were compared to the measured results using blower door test. The proposed method is similar to the blower door test, but there are some differences. This study measured the pressure difference in the front door and the building envelope, which can be easily measured, and calculated the airflow that pass to the building envelope based on the airflow at various pressure difference conditions shown in the airtightness report of the front door. This is possible because the amount of air flowing in and out under steady state conditions is always the same. Based on this, the airflow was calculated at several pressure difference conditions in the building envelope, and C and n were defined. With this, it is possible to calculate the airtightness performance in various pressure difference conditions.
In order to verify the proposed method, this study measures the pressure difference and the airtightness performance in the building using the blower door test. The results are as follows; the value of C, n was calculated using the proposed method, and C was about 19.4 and n was about 0.895. The airtightness performance was predicted to be 3.25 (1/h@50 Pa). When the measured and predicted results were compared, there was no significant difference.

목차

Abstract
1. 연구배경 및 목적
2. 차압을 이용한 기밀성능 예측방법
3. 제안된 방법의 적용 (Case study)
4. 결과 및 고찰
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-553-000236751