메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산업경영시스템학회 산업경영시스템학회지 산업경영시스템학회지 제39권 제3호
발행연도
2016.1
수록면
170 - 179 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper we have tackled the outstanding inventory planning problems over new product launching period in a more holistic manner by addressing first the definition of efficient business rules to effectively control and reduce the inventory risks followed by the rigorous explanations on the implementation guide on suggested inventory planning rules. It is not unusual for many companies in the consumer electronics market to make a great effort to reduce the time to launch a new product because the ability to bring out higher performing products in such a short time period greatly increases the probability for them to remain competitive in the high tech market. Among so many newly developed products, those products with new features and technologies appeal to many potential customers while products which fail to win customers by design and prices rapidly disappear in the market. To adapt to this business environment, those companies have been trying to find the answer to minimize the inventory of old products so they can move to next generation products quickly with less obsolete material . In the experimental implementation of our rule-based inventory planning, Company ‘S’ reduced the inventory cost for the outgoing products as low as 49% of its peak level of its preceding product version in just 5 month after the adoption of rule-based inventory planning process and system. This paper concluded the subject with a suggestion that the best performance of rule-based inventory planning is guaranteed not from one-time campaign of process improvement along with system development but the decision maker’s continuing support and attention even without seeing any upcoming business crisis.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0