메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박상천 (국방기술품질원) 박동수 (국방기술품질원)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제20권 제5호
발행연도
2019.5
수록면
492 - 501 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사이버 공간에서 안전하게 시스템을 사용하기 위해서는 상황에 적합한 보안 솔루션을 사용해야 한다. 사이버 보안을 강화하기 위해 과거부터 현재까지 보안의 흐름을 정확히 파악하고 미래의 다양한 위협에 대비해야 한다. 본 연구에서는 텍스트마이닝을 이용하여 신뢰도가 높은 네이버 뉴스의 보안/해킹 뉴스의 정보보안 단어들을 수집 후 분석하였다. 첫 번째는 지난 7년의 연도별 보안 뉴스 기사수를 확인하고 추이를 분석하였다. 두 번째는 보안/해킹 관련 단어 순위를 확인 후 매년 주요 관심사를 확인하였다. 세 번째는 보안 솔루션별 단어를 분석하여 어느 보안 그룹의 관심도가 높은지 확인하였다. 네 번째는 보안 뉴스의 제목과 본문을 분리 후 보안 관련 단어를 추출 후 분석하였다. 다섯 번째는 세부 보안 솔루션별 추이 및 동향을 확인하였다. 마지막으로 연도별 매출액과 보안 단어 빈도수를 분석하였다. 이러한 빅데이터 뉴스 분석을 통해 보안 솔루션에 대한 전반적인 인식 조사를 수행하고 많은 비정형 데이터를 분석하여 현재 시장 추세를 분석하고 미래를 예측할 수 있는 정보를 제공하는 데 기여하고자 한다.

목차

요약
Abstract
1. 서론
2. 본론
3. 고찰
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-505-000797963