메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seoung-Ho Choi (Hansung University) Sung Hoon Jung (Hansung University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.19 No.1
발행연도
2019.3
수록면
40 - 47 (8page)
DOI
10.5391/IJFIS.2019.19.1.40

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a verification method whether fake fingerprints generated by DCGAN are similar to actual fake fingerprints in order to augment fake fingerprint data. The first method to verify is to compare the distributions of the mean and standard deviation of fake fingerprints generated by deep convolutional generative adversarial network (DCGAN) with those of actual fake fingerprints. In the second method, the mean Hamming distance, which is a method of evaluating the similarity of images, is used for measuring the similarity between the generated fake fingerprints and the actual fake fingerprints. The third method is to obtain the histograms of the generated fake fingerprints and actual fake fingerprints and measure the similarity by calculating Pearson correlation of the histograms. The fourth method is to calculate intersection of union, which is a method of evaluating the shape similarity of images, between generated fake fingerprints and actual fake fingerprints. From extensive experiments it was confirmed that fake fingerprints generated by DCGAN could be used to augment fake fingerprint data because generated fake fingerprints are similar to actual fake fingerprints in terms of four similarity measures.

목차

Abstract
1. Introduction
2. Related Works
3. Proposed Method
4. Experimental Results
5. Conclusions
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-003-000551491