메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정노권 (이즈테크놀로지) 조수선 (한국교통대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제21권 제12호
발행연도
2018.12
수록면
1,417 - 1,424 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In order to improve the performance of image classifications using Convolutional Neural Networks (CNN), applying a category hierarchy to the classification can be a useful idea. However, the visual separation of object categories is very different according to the upper and lower category levels and highly uneven in image classifications. Therefore, it is doubtable whether the use of category hierarchies for classification is effective in CNN. In this paper, we have clarified whether the image classification using category hierarchies improves classification performance, and found at which level of hierarchy classification is more effective. For experiments we divided the image classification task according to the upper and lower category levels and assigned image data to each CNN model. We identified and compared the results of three classification models and analyzed them. Through the experiments, we could confirm that classification effectiveness was not improved by reduction of number of categories in a classification model. And we found that only with the re-training method in the last network layer, the performance of lower category classification was not improved although that of higher category classification was improved.

목차

ABSTRACT
1. 서론
2. 관련 연구
3. 카테고리 계층구조 및 분류 모델
4. 실험 및 분석
5. 결론
REFERENCE

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0