메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이재성 (과학기술연합대학원대학교) 전승표 (한국과학기술정보연구원) 유형선 (한국과학기술정보연구원)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제24권 제3호
발행연도
2018.9
수록면
221 - 241 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
지식사회에 들어서며 새로운 형태의 자본으로서 정보의 중요성이 강조되고 있다. 그리고 기하급수적으로 생산되는 디지털 정보의 효율적 관리를 위해 정보 분류의 중요성도 증가하고 있다. 본 연구에서는 기업의 기술사업화 의사결정에 도움이 될 수 있는 맞춤형 정보를 자동으로 분류하여 제공하기 위하여, 기업의 사업 성격을 나타내는 한국표준산업분류(이하 `KSIC`)를 기준으로 정보를 분류하는 방법을 제안하였다. 정보 혹은 문서의 분류 방법은 대체로 기계학습을 기반으로 연구되어 왔으나 KSIC를 기준으로 분류된 충분한 학습데이터가 없어, 본 연구에서는 문서간 유사도를 계산하는 방식을 적용하였다. 구체적으로 KSIC 각 코드별 설명문을 수집하고 벡터 공간 모델을 이용하여 분류 대상 문서와의 유사도를 계산하여 가장 적합한 KSIC 코드를 제시하는 방법과 모델을 제시하였다. 그리고 IPC 데이터를 수집한 후 KSIC를 기준으로 분류하고, 이를 특허청에서 제공하는 KSIC-IPC 연계표와 비교함으로써 본 방법론을 검증하였다. 검증 결과 TF-IDF 계산식의 일종인 LT 방식을 적용하였을 때 가장 높은 일치도를 보였는데, IPC 설명문에 대해 1순위 매칭 KSIC의 일치도는 53%, 5순위까지의 누적 일치도는 76%를 보였다. 이를 통해 보다 정량적이고 객관적으로 중소기업이 필요로 할 기술, 산업, 시장정보에 대한 KSIC 분류 작업이 가능하다는 점을 확인할 수 있었다. 또한 이종 분류체계 간 연계표를 작성함에 있어서도 본 연구에서 제공하는 방법과 결과물이 전문가의 정성적 판단에 도움이 될 기초 자료로 활용될 수 있을 것으로 판단된다.

목차

1. 서론
2. 선행연구
3. 연구모형
4. 연구결과
5. 결론
참고문헌(References)
Abstract

참고문헌 (56)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0